Adding Goal Priorities to Teleoreactive Logic Programs

Nan Li! (nan.li.3@asu.edu)
Dongkyu Choi? (dongkyuc@stanford.edu)
Pat Langley' (langley @csli.stanford.edu)
1 School of Computing and Informatics, Arizona State University, Tempe, AZ, USA
2 Computational Learning Laboratory, CSLI, Stanford University, Stanford, CA, USA

Abstract

When people have more than a single goal,
they usually start with the most important one
and continue on to the next. Artificial agents
can use the same scheme, letting them work
on multiple goals in the order of relative im-
portance. Previously, we introduced the notion
of a releoreactive logic program that provides in-
telligent agents with reactive but goal-directed
behavior. However, this formalism does not
support multiple goals effectively, especially
when they have different priorities. In this pa-
per, we report a new framework, prioritized tele-
oreactive logic programs, that extends the previ-
ous formalism and that handles multiple goals
in a modular fashion. We illustrate this ap-
proach in the domain of urban driving and we
report experimental evidence of its advantages
therein. We also consider the implications of
prioritized goals for skill learning, along with
related work on multi-goal processing.

Keywords: teleoreactive control, multiple goals,
goal priorities

Introduction

Previous work in cognitive science suggests that people carry
out complex activities in a goal-directed manner by using
skills that are organized hierarchically. To model this abil-
ity, we introduced a representational formalism, teleoreactive
logic programs,' that encodes complex skills in a hierarchi-
cal manner (Langley & Choi, 2006). These programs index
skills by the goals they achieve, and they let agents produce
goal-directed behavior while remaining reactive to their cur-
rent surroundings.

When people have multiple goals, they typically set prior-
ities and try to achieve them one by one. Similarly, artificial
agents can prioritize their goals and work on each of them in
sequence. However, since goals can interact with each other,
some achieved objectives may become unsatisfied at a later
time. For this reason, an agent must have some way to main-
tain the satisfied goals, either by avoiding actions that will
undo them or by returning to more important goals whenever

IWe have borrowed the term teleoreactive from Nilsson (1994), who
coined it to indicate systems that are goal directed but that also respond to
their environment.

they become untrue. However, the actions that violate the
satisfied goals may be carried out not only by the agent itself,
but also by other agents in the world, which makes it diffi-
cult to take the first approach. Therefore, we have focused
on methods for switching the agent’s attention back to higher
priority goals when they no longer hold. To this end, we have
developed an extended formalism — prioritized teleoreactive
logic programs — that supports processing of multiple top-
level goals.

In the following sections, we review the basic assumptions
and features of teleoreactive logic programs, along with a
physical domain that we use to illustrate and evaluate the
framework. In addition, we describe a mechanism that lets
agents handle multiple goals with different priorities, and we
report experimental evidence for its advantages over the orig-
inal formalism. We also discuss some implications for learn-
ing in the extended framework. We conclude with a short
review of related research on agent architectures and some
suggestions for future work.

A Review of Teleoreactive Logic Programs

Before presenting our extension to teleoreactive logic pro-
grams, we should first review our previous work on this topic.
We begin by describing the basic formalism, after which we
consider the inference and execution mechanisms that oper-
ate over structures encoded in this framework. We have em-
bedded these representational and processing assumptions in
ICARUS, a cognitive architecture for physical agents that sup-
ports goal-driven but reactive behavior. We will occasionally
use ICARUS and teleoreactive logic programs as synonyms,
although other interpreters for this formalism are possible.

Representation of Knowledge

A teleoreactive logic program assumes both long-term and
short-term memories. Long-term structures reside in a skill
memory, which contains methods for achieving goals, and
a conceptual memory, which specifies abstractions of situa-
tions the agent may encounter. Short-term stores include a be-
lief memory, which contains instantiated concepts that match
against the current situation, and a goal memory, which in-
cludes objectives the agent wants to achieve.

The skill memory is organized hierarchically. Each skill
clause provides a method the agent can execute in the world
to achieve a desired situation. Such a clause consists of a
head, which is a defined concept that specifies the desired
situation, a set of start conditions that must hold to initiate the
skill, requirements that must hold during its execution, and

Table 1: Examples of skills for the urban driving domain.

Table 2: Examples of concepts for the urban driving domain.

((at-desired-speed ?self)
:percepts ((self ?self))
:start ((stopped 7?self)
ractions ((xgas 6.25)))

((at—address 7?self ?ad ?st)

:percepts ((self ?self) (street ?st))

:start ((address-behind 7?self ?ad ?st))

:subgoals ((address-in-front ?self ?ad ?st)
(

at-address ?self ?7ad ?st)))

((at-desired-speed ?self)

:percepts ((self ?self speed ?speed
limit ?1limit))

:tests ((<= 7?speed (- ?limit 5))
(> ?speed (- ?limit 15))))

((at—-street ?self ?street)

:percepts ((self ?self) (segment ?sg))

:relations ((in-segment ?self ?sqg)
(segment-at-street ?sg ?street)))

steps that should make the head true. Table 1 presents some
sample skills, which we can divide into two groups.

Primitive skills have an action field that refers to actions
the agent can execute directly in the environment. For exam-
ple, the skill (at-desired-speed ?self) in Table 1 is a primitive
skill which states that, when the agent’s vehicle is stopped,
the agent should invoke the action (*gas 6.25) to ensure the
vehicle will eventually achieve the desired speed.

Nonprimitive skills have similar structure, but specify sub-
goals the agent should achieve instead of actions it should
execute. For example, (at-address ?self ?ad ?st) in Table 1 is
a nonprimitive skill that takes the agent to a specified address
by decomposing the task into two subgoals, (address-in-front
?self ?ad ?st) and (at-address ?self ?ad ?st). This means that,
if the target address is behind the car, it should first change
the heading to face the address and then recursively achieve
the original goal of reaching the address.

The conceptual memory characterizes world situations at
different levels of abstraction, as shown in Table 2. Each con-
ceptual clause has a head, which consists of a predicate with
arguments, and a body, which defines the class of situations
that match the concept. Every predicate that occurs in skill
memory has a corresponding predicate in conceptual mem-
ory. There are two forms of concepts, just as with skills.

Primitive concepts have a test field in their bodies that
refers only to percepts that agent can observe directly in
the environment, while nonprimitive concepts have a rela-
tion field that refers to other concepts. Table 2 shows ex-
amples of concepts from the driving domain. The primitive
concept (at-desired-speed ?self) specifies that, if the vehicle’s
speed is neither too slow nor too fast, (at-desired-speed ?self)
is true. In contrast, the nonprimitive concept (at-street ?self
?street) refers to two lower-level concepts, (in-segment ?self
?segment) and (segment-at-street ?sg ?street). This clause in-
dicates that, if the vehicle is in a certain segment and the seg-
ment is part of a given street, then the vehicle is on that street.

Belief memory is a short-term store that contains instances
of concepts that the current situation satisfies. Each belief in-
cludes a predicate defined in conceptual memory and zero or
more arguments that refer to objects in the environment. For
instance, if the speed of vehicle veh is under the speed limit,
thus satisfying the concept (at-desired-speed ?self), then be-
lief memory will include the structure (at-desired-speed veh).
However, if the vehicle exceeds the speed limit later, (az-
desired-speed veh) will no longer be present, even though the
concept at-desired-speed remains in long-term memory.

Goals reside in another short-term memory. A goal is some
concept that the agent wants to satisfy. Like beliefs, each
goal consists of a defined predicate and its arguments, but
in this case some arguments may be pattern-match variables
rather than constants. For instance, the goal (at-desired-speed
veh) means the agent wants to drive its vehicle veh below the
speed limit, whereas the goal (at-desired-speed ?any) means
it wants every vehicle to obey the speed limit.>

Taken together, the contents of these memories provide an
agent with the information needed to produce goal-directed
yet reactive behavior. We assume that skills and concepts
change only gradually over time, as the result of learning,
whereas beliefs change more rapidly, as the environment
changes. We typically include skills and concepts when we
refer to a teleoreactive logic program, but not beliefs. Goals
are somewhat more ambiguous, but we will return to this is-
sue later in the paper.

Inference and Execution Mechanisms

As noted earlier, the ICARUS architecture (Langley, 2006)
provides an interpreter for teleoreactive logic programs. This
operates in discrete cognitive cycles, as Figure 1 depicts. On
each cycle, the system first carries out an inference process
that infers beliefs from low-level percepts in the environment
and its conceptual knowledge. The inferred concept instances
describe the agent’s belief state, which it builds on in later
decision-making processes.

The inference module starts by extracting information
about objects the agent perceives in its immediate surround-
ings, as shown in Table 3. After this, it initiates a bottom-
up, data-driven process that matches the resulting percepts
against concept definitions stored in long-term memory. The
system instantiates the satisfied concepts based on the current
environmental state by replacing variables with constants and
stores them in belief memory. ICARUS begins by matching
percepts against primitive concepts and adds instances of sat-
isfied concepts to memory. These trigger matching of higher-
level concepts, which produces additional beliefs. The entire
process halts when the system can draw no more inferences.

For example, given the percepts in Table 3, the system in-
fers a variety of beliefs from primitive concepts, such as that
the vehicle is in segment S2724 and segment S2724 is on

2Basic teleoreactive logic programs assume the agent has a single top-
level goal, but one can augment them to include a goal stack with subgoals
that supports means-ends problem solving, which we discuss later.

P Buffer ‘

Belief Memory Perception

Long-term Categorization
Conceptual Memol and Inference
[Skill Rets | } ‘ Environment ‘
Long-term . .
Skill Memory Goal Memory [Skill Execution]

L A

Motor Buffer

Figure 1: Execution of teleoreactive logic programs.

street B. After this, the interpreter further infers that the ve-
hicle is on street B, which depends on a higher-level concept.
The result is a rich description of the environment at differ-
ent levels of abstraction, which the system can use to drive
its execution of skills. The inference process repeats on every
cycle, thus ensuring that the agent’s beliefs reflect the current
state of its surroundings.

Given an inferred set of beliefs, ICARUS’ execution mod-
ule carries out a goal-directed evaluation of the clauses in skill
memory. On the first cycle, if the top-level goal is unsatisfied,
the system attempts to find an executable path through the
skill hierarchy. A skill path starts with a skill that achieves
the current goal. If this skill is a primitive one, it will be
the only skill on the path. Otherwise, the path will have a
skill that achieves the first unsatisfied subgoal as its next el-
ement. The path continues downward through the hierarchy,
terminating with a primitive skill that describes what actions
to perform in the world. A skill path is executable when the
start conditions of every skill on the path are satisfied. Once
ICARUS has selected such a path, it applies the actions listed
in the primitive skill in the environment.

On subsequent cycles, the interpreter prefers the path that it
executed on the previous cycle. Instead of finding a new path
from scratch, it takes the previous path and starts evaluating
from the highest-level skill. If the skill is still executable in
the updated state, then it follows the path to the next skill.
When it encounters a skill instance on the path that is no
longer executable, the system finds another executable skill
that achieves the subgoal, thus diverging from the previous
path. This control strategy lets the system remain reactive to
its surroundings while generating persistent and goal-directed
behavior.

An Illustrative Domain

Our examples of teleoreactive logic programs have drawn on
an illustrative domain, a simulated urban driving environment
(Choi et al., 2007) that we have used in our prior work on this
topic. This has proven to be a rich and challenging testbed
that involves complex goal-directed activities. The environ-
ment is inherently dynamic and involves many objects to
which the agent must react based on limited perceptions. The
agent must also follow certain rules, such as driving on the
right side of the road, staying under the speed limit, and not
hitting pedestrians. It must also decide how to respond when
these constraints conflict with each other, such as when col-
lision with another vehicle interferes with the lower-priority
goal of delivering a package.

Torque Game Engine

-

Figure 2: A screen shot of the urban driving domain.

Figure 2 presents a screenshot of the simulated driving en-
vironment. This includes both static objects, such as road
segments, intersections, lane lines, and buildings, and dy-
namic objects, such as pedestrians and vehicles. Every road
is divided into multiple segments, each of which includes five
lane lines, a yellow one in the middle, two white ones on both
sides, and two sidewalks at the street boundary. Buildings
sit on both sides of the street and have address numbers. A
typical package-delivery task involves taking a package to a
specified street address. Pedestrians walk across the road at
unpredictable intervals, and other simulator-controlled vehi-
cles drive through the city, obeying the traffic laws. The agent
also controls a vehicle, which it must use to achieve its goals.

The driving agent can perceive objects in the environment,
but only ones in its immediate surroundings. Table 3 shows
some examples of perceived objects, with distances and an-
gles in agent-centered polar coordinates. These include two
streets named SECOND and B, along with their intersection,
52708, which is 88.7815 meters from the car. Segment S2724
in street B is 88.986 meters from the agent’s car, while a lane
line, sidewalk1, is 30.503 meters away. The number 5.27616
indicates the angle between the car’s heading and the lane
line’s direction. A building, B2677, has address 2 on street
B, and the two of its corners nearest to the car have distances
42.4071 and 54.092 meters, respectively. The agent also per-
ceives the angles and distances of pedestrians around it.

The environment also provides the agent with actions it can
invoke to control the vehicle, as shown in Table 4. In particu-
lar, the agent can push the gas pedal to speed up and step on
the brake to slow down. The agent can also control the speed
of this acceleration and deceleration, and it can control the
vehicle’s direction by turning the steering wheel to different
angles. When combined with the environment’s complex sur-
roundings, these functions provide enough control to support
arich set of driving activities.

Table 3: Sample object information that the agent perceives
in the driving environment.

((street SECOND) (street B)

(segment S2724 street B dist 88.986)

(building B2677 address 2 street B
clangle -49.5323 cldist 42.4071
c2angle -34.5953 c2dist 54.092)

(intersection 52708 street SECOND
cross B dist 88.7815)

(lane-line SIDEWALK]l color SIDEWALK
dist -30.503 angle 5.27616
segment S52724)

(man M31 angle 16.5915 dist 87.035)
(self ME speed 20.0 heading -5.60023
wheel-angle 0 throttle 0 limit 25
breakthrottle 100 segment S2724)
(package PACKET1 address 5 street A

delivered NIL))

Adding Goal Priorities

In previous work (Langley, 2006), we have reported a teleo-
reactive logic program that controls an urban driving agent.
The system drives around the city and performs various tasks
like package delivery. However, our experience with this en-
vironment also revealed a key limitation of teleoreactive logic
programs. Because the domain includes a number of distinct
constraints and driving rules, we were forced to reproduce
these constraints repeatedly throughout the skill hierarchy to
ensure the agent always obeyed them in its activities.

For example, during the process of delivering the packages,
the driving agent must operate within constraints such as stay-
ing under the speed limit and staying within the lanes. In a
basic teleoreactive logic program, this means that we must
include each constraint as a requirement of skills that control
high-level activities. For example, to make sure that the agent
always drives under the speed limit, every skill must handle
both the situations in which (at-desired-speed ME) holds and
those in which it does not hold, as shown in Table 5. More-
over, the complexity of the program will continue to grow as
we add new constraints on the agent’s behavior.

Furthermore, the basic formalism cannot deal easily with
the fact that some constraints, such as not hitting pedestrians,
are more important than others, such as driving at the desired
speed. When the vehicle is heading toward a pedestrian, the
appropriate response is to avoid running him down by slowing
down the car quickly, even if this means failing to satisfy (at-
desired-speed ME). In such cases, the skills in Table 5 are
insufficient, since they maintain the same priority for the two
driving laws. The skill hierarchy needs further modification
to make sure the agent maintains its speed only when it is not
about to hit a pedestrian. This makes the encoding even more
complicated, as Table 6 indicates.

This is a general phenomenon we observed in program-
ming agents, which motivated us to extend the original frame-
work to address its limitations. In response, we developed
a new formalism, prioritized teleoreactive logic programs,
that differs only in that it maintains a list of top-level goals,

Table 4: Actions available in the driving environment.

NO OP

push the gas pedal at the
given amount

push the brake pedal at the
given amount

straighten the steering wheel
turn the steering wheel to
the given angle

(xcruise)
(xgas pedal)

(xbrake pedal)

(#straighten)
(#steer angle)

such as (not-hitting-pedestrians ME), (at-desired-speed ME),
and (package-delivered Packagel). On every cycle, the inter-
preter selects the first unsatisfied goal from this list and works
toward this objective until satisfying it. Note that this mech-
anism does not forget about a goal once it has been achieved,
but rechecks its status at each time step. During this process,
if some higher-priority goal becomes unsatisfied, the agent
suspends work on its current goal and switch to the high-
priority one. After it has reachieved this goal, the agent re-
sume the work on the suspended objective.

This mechanism ensures that the agent considers a goal
only when all more important goals are satisfied, so that
they always hold during execution of low-priority tasks.
For instance, suppose that the current goal is (package-
delivered Packagel) and all higher-priority goals, including
(not-hitting-pedestrians ME) and (at-desired-speed ME), are
satisfied. In this situation, the agent will attempt to deliver
Packagel to its destination. However, suppose that, after sev-
eral cycles, the agent detects that it is no longer under the
speed limit. Since (at-desired-speed ME) has a higher pri-
ority than (package-delivered Packagel), the agent will stop
delivering the package and will adjust its speed until it slows
down to the speed limit. Afterward, the agent will return to
its delivery task.

Some readers may question why we view the prioritized
goal list as part of the teleoreactive logic program, arguing
that, since goals are ephemeral, we should treat them as sepa-
rate. However, certain goals encode constraints that the agent
must continuously obey, making them a form of long-term
knowledge. By incorporating these constraints into the pri-
oritized goal list, we effectively encode them as knowledge
about the domain. From this point of view, the new formal-
ism supports a more efficient way to state such knowledge
than the original scheme, making it reasonable to view the
goal list as part of the program.

With this extension, the introduction of new driving laws
requires only a small number of additional skills to pro-
duce the desired behavior, provided that the goal list encodes
their priorities. This involves only incremental modification,
with no changes to the skills in the original knowledge base.
Therefore, if we change the constraints later, we need only
modify the newly added skills and the goal list. In summary,
the program’s modularity makes it easy to maintain over time,
as requirements develop.

Table 5: Skills for the driving domain with one law in original
formalism.

((at—-address 7?self ?ad ?st)

:percepts ((self ?self) (street ?st))

:start ((address-behind ?self ?ad ?st))

:requires ((at-desired-speed ?self))

:subgoals ((address—-in-front ?self ?ad ?st)
(

at—-address ?self ?ad ?st)))

((at—-address 7?self ?ad ?st)

:percepts ((self ?self) (street ?st))

:start ((not (at-desired-speed ?self)
(address—behind ?self ?ad ?st))

:subgoals ((at-desired-speed ?self)

(at—-address ?self ?2ad ?st)))

Empirical Benefits

As just discussed, because our original formalism was ineffi-
cient at handling certain constraints, such as driving laws, we
have proposed an extended framework, prioritized teleoreac-
tive logic programs, that should support greater modularity.
This approach embeds information about priority in a list of
top-level goals and extends the execution mechanism to sup-
port their pursuit. This should produce a simplified skill hier-
archy that is easier for the developer to modify when domain
constraints change.

However, these are empirical claims that we must sup-
port with evidence. To evaluate the benefits of the extended
formalism, we designed experiments that compared the two
frameworks’ abilities to encode agent behavior. First, to test
the hypothesis that the new formalism maintains a more com-
pact and modular knowledge base than the original one, we
varied the number of driving laws that the agent must obey
and measured the number of skills required to show equiva-
lent behaviors in the two notations.

Table 7 shows the results from this study. With no driving
laws, the agent needed 54 skills in both formalisms. These
skills encode basic driving behavior, such as accelerating, de-
celerating, and steering to align the vehicle with lane lines.
However, when we add a constraint related to at-desired-
speed, the number of skills doubled in the original formalism,
while we needed a mere three additional skills in the extended
one. Adding a second law related to not-hitting pedestrians
required another 55 skills in the old framework but only one
new skill in the expanded one.

Second, to test the hypothesis that the extended formalism
is easier to modify when domain constraints are changed, we
encoded three driving laws in both the original formalism and
the extended one, and then changed some of them. For exam-
ple, suppose that we were no longer interested in ensuring
that the agent always drives below the speed limit, and in-
stead wanted to model an aggressive driver that always ex-
ceeds it. In this case, we might need to delete some skills and
add others. Thus, we varied the number of laws changed in
the domain and recorded the number of skills that we needed
to revise in both frameworks.

Table 8 presents the results from this experiment, which
reveal that there was no need to modify the skills in the ex-

Table 6: Skills for the driving domain with two ordered laws
in the original formalism.

((at—address ?self?ad ?st)

:percepts ((self ?self) (street ?st))

:start ((address-behind ?self ?ad ?st))

:requires ((not-hitting-pedestrians ?self)
(at-desired-speed ?self))

:subgoals ((address—-in-front ?self ?ad ?st)
(

at—-address ?self ?ad ?st)))

((at—-address 7?self ?ad ?st)
:percepts ((self 7?self) (street ?st))

:start ((not (not-hitting-pedestrians ?self))
(address—behind ?self ?ad ?st))
:subgoals ((not-hitting-pedestrians ?self)
(

at—-address ?self ?ad ?st)))

((at—-address 7?self ?ad ?st)

:percepts ((self ?self) (street ?st))

:start ((not (at-desired-speed ?self)
(address—behind ?self ?ad ?st))

:require ((not-hitting-pedestrians ?self)

:subgoals ((at-desired-speed ?self)
(at—-address ?self ?ad ?st)))

tended formalism. To produce an agent that obeys the new
laws, we only needed to change the top-level goals. How-
ever, the original formalism required that we delete 54 skills
and add the same number of skills when we replaced one
driving constraint from at-desired-speed to driving-as-fast-
as-possible. Moreover, we had to revise twice this number
of skills when we changed a second constraint on the agent’s
driving behavior. The number of altered skills appears to
grow proportionally with the number of changed driving laws
in the original framework, but does not grow in the extended
one.

These results support our claims about the benefits of pri-
oritized goal lists. Basic teleoreactive logic programs require
around 50 new skills to ensure compliance with a new con-
straint, but the extended formalism allows equivalent behav-
ior with only a handful of additional skills. The old frame-
work needs over 50 skill revisions to satisfy each modified
constraint, whereas the new one requires only minor changes
to the skills and goal list.

Implications for Learning

As described elsewhere (Langley & Choi, 2006), we have
also demonstrated methods for learning teleoreactive logic
programs from experience. In this section, we review this
earlier work and then discuss ways to extend the approach to
support prioritized goal lists.

Problem Solving and Skill Learning

Our previous work has assumed that skill learning is a side
effect of problem solving, which occurs whenever the system
hits an impasse during execution, in that it cannot find any
applicable path through the skill hierarchy that addresses the

Table 7: Number of skills required to encode different num-
bers of driving laws in the original and extended formalisms.

Table 8: Number of skills modified for different numbers of
driving laws in the original and extended formalism.

Driving Teleoreactive Prioritized
Laws Logic Programs Teleoreactive
Logic Programs
0 54 54
1 111 57
2 166 58

Changed Teleoreactive Prioritized
Laws Logic Programs Teleoreactive
Logic Programs
0 0 0
1 54 0
108 0

current goal. In such cases, a means-ends problem solver de-
composes the current goal by chaining backwards off either
conceptual clauses or primitive skills, with a priority on the
latter alternative.

In skill chaining, the system retrieves a skill clause that
contains the goal in its effect, whereas concept chaining uses
the concept definition to decompose the goal into multiple
subgoals based on subconcepts. The system pushes the se-
lected subgoal onto a goal stack and records details about
its decisions for future use. This process continues recur-
sively until it finds a subgoal for which there is an executable
method in the current situation or until it must backtrack.

Once the system finds an applicable skill path that will
achieve the current subgoal, it enacts the associated actions in
the environment, thus interleaving problem solving with exe-
cution. Although this may put the agent in a situation where it
cannot backtrack in the world, it allows incremental learning
of new skills upon achieving each subgoal. We can explain
this process with an example from the Blocks World, which
we use here for its clarity; however, we have obtained similar
results in the urban driving domain.

Figure 3 shows a trace of problem solving in the Blocks
World. The agent is given the goal of clearing block A, but
it cannot find any applicable skill path in the current state. In
response to this impasse, it invokes problem solving, which
chains off the goal using the instantiated skill (unstack B A).
This has the start condition (unstackable B A), which the sys-
tem pushes onto the goal stack. On the next cycle, the agent
uses concept chaining to decompose this subgoal into (clear
B) and (hand-empty), and the system chooses the currently
unsatisfied (clear B) as its next subgoal.

Since there exists an executable skill, (unstack C B), that
would achieve this subgoal, the system executes it. This pro-
duces a state in which (clear B) is true, but in which (hand-
empty) has become untrue. Therefore, the agent pushes this
subgoal onto its stack and retrieves (putdown C T), which it
executes in turn. This makes (unstackable B A) true, which
means the agent can finally execute (unstack B A) to achieve
the top-level goal (clear A). Although this example is simple
enough to let the system find the solution without much ef-
fort, the problem solver must often carry out search before
succeeding on a task.

Throughout this process, whenever the system achieves a
goal or subgoal, it creates a new skill based the information
stored in the goal stack. Thus, learning is fully integrated
with both problem solving and execution, producing the in-
cremental addition of skills as the agent gains experience in
the domain. The head of the new skill is a generalized ver-

sion of the goal in which constants are replaced by variables,
whereas the body depends on whether the system produced
the subgoal through skill chaining or concept chaining.

If the agent achieved the goal through skill chaining, the
two subgoals of the new skill are the heads of the skill used
to achieve the start condition of the chained skill and the head
of the chained skill, in the same order as their execution. The
start condition is simply the start condition of the first sub-
goal. Thus, if the agent first applied skill Sy to satisfy the start
condition of skill S> and then applied S, to achieve the goal,
the subgoals of the new skill are S; and S5, in this order, and
the start condition of the new skill is the start condition of
S1. The effect of the new skill is the same as the effect of the
chained skill, in this case S>.

On the other hand, if the agent achieved the goal through
concept chaining, the subgoals of the new skill are subcon-
cepts that were initially unsatisfied, in the order the system
achieved them. For example, suppose that the subconcepts
of the goal are S, S», and S3, that S| held in the initial sit-
uation, and that the agent first achieved S, and then S3. In
this case, the subgoals of the new skill clause would be S,
and S3. The start condition consists of those subconcepts that
held initially, in this case Sj.

On subsequent problems, the system will take advantage of
these learned skills whenever they apply to the current situa-
tion. These let the agent achieve goals that require many steps
purely through skill execution, rather than by resorting to de-
liberative problem solving. Experiments in the Blocks World,
urban driving, and other domains indicate that such learning
improves the agent’s performance substantially.

Learning with Multiple Goals

The learning mechanism described above focuses on a sin-
gle top-level goal, but clearly the introduction of a prioritized
goal list offers opportunities for other forms of skill acquisi-
tion. Here we discuss a some proposals along these lines.
One idea involves the gradual propagation of recurring
constraints into the bodies of skills. Such compilation of ex-
plicit goals into implicit procedures happens regularly in hu-
mans. For instance, when a person first learns to drive, he
must keep the driving rules in memory and constantly focus
on following them. As the driver gains experience, obeying
these constraints becomes automated and unconscious, thus
freeing attention for other activities. However, note that such
compilation also has negative impacts, in that it makes the
agent less adaptive; a skilled driver has difficulty when placed
in a setting that involves different driving laws. Nevertheless,
modeling this compilation would produce more human-like

initial state

(hand-empty),

((ontable A T),

00008

{(onB A)

'

A <

Figure 3: A problem-solving example in the Blocks World.
Conceptual clauses are shown in circles, while skill clauses
are in rectangles.

behavior at the expense of flexibility and adaptivity.

A mechanism that may lead to such compilations concerns
learning from failure. Consider a situation in which the agent
is pursuing a low-priority goal, but in the process takes an ac-
tion that violates a higher-priority one. Upon analyzing the
cause of this unexpected event and identifying alternative ac-
tions that would have avoided it, the system would incorpo-
rate these into new, more specific skills that have precedence
over the original ones. These would effectively incorporate
the high-priority goal in procedural form, letting the agent
drop it as an explicit objective once it has acquired enough
such specialized skills.

Another idea is that, when an agent pursues multiple goals,
it should also learn skills that take into account interactions
among them. This should lead to more efficient execution,
in that it can avoid redundant efforts and violations of previ-
ously achieved goals. The system would store the acquired
skills under a new goal that is the conjunction of more basic
constraints; these procedures should take relative priorities
into account in an attempt to keep the different constraints
satisfied as often as possible. We hypothesize that analytic
learning from failure can also contribute to the construction
of such integrated skills.

In summary, the introduction of a prioritized goal list sug-
gests a number of extensions to learning teleoreactive logic
programs. Together, these should let the framework more
closely reflect the nature of human skill acquisition and sup-
port more automatized behavior that plays an important role
in complex domains like urban driving.

Related Research

The formalism we have reported in this paper shares some
basic principles with previous work. The idea that skills are
organized hierarchically goes back to the earliest days of arti-
ficial intelligence and cognitive science (Miller et al., 1960).
Recently, research on hierarchical task networks (Nau et al.,
1999) has built upon this tradition. Our formalism encodes
skills in a similar format, but it indexes skills by the goals

they achieve. Both frameworks can represent more complex
goal-directed activities than purely reactive approaches like
those used in behavioral cloning (Sammut, 1996).

There has been some other work on handling multiple goals
in agent architectures, including multi-tasking mechanisms
that deal with prioritized goals by assigning resources prop-
erly. For example, Freed’s (1998) APEX manages multiple
tasks in complex, dynamic environments under time pressure.
His architecture calculates its own task priorities based on re-
source conflicts, and thus takes a more sophisticated approach
than the one we have reported.

More recently, Salvucci and Taatgen (in press) have at-
tempted to unify various multi-tasking models in ACT-R.
Their approach, which they call threaded cognition, posits
that goals correspond to threads of processing across a set
of resources, and they report an algorithm that acquires and
releases these resources. Our approach differs by focusing on
priorities among constraints that are unrelated to resources,
such as giving some driving laws precedence over others.

Haigh and Veloso’s (1996) Rogue also generates and ex-
ecutes plans that address multiple goals. Their system uses
goal-selection rules to prioritize goals that may arrive asyn-
chronous and to pick one goal from among those pending
ones. This framework treats all objectives as achievement
goals and does not check their status after achieving them.
In contrast, our approach handles both short-term goals like
package delivery and long-term goals like obeying traffic
laws.

Directions for Future Work

Despite the promise of prioritized teleoreactive logic pro-
grams, our research on this topic remains in its early stages.
We have already discussed the need to integrate the new ap-
proach with learning, but there remain a number of other open
issues that we should address in our future work.

First, we plan to demonstrate the benefits of the extended
formalism in domains that involve even more complex skill
hierarchies. As before, we will build agent programs in both
frameworks, introduce additional constraints to the task, and
then measure the sizes of the skill hierarchies. We expect
these studies to replicate our initial results, but further evi-
dence will strengthen our claims about the advantages of pri-
oritized goal lists for modularity.

Second, we will explore mechanisms that adjust goal pri-
orities in response to learning. Elsewhere (Asgharbeygi et al.,
2006), we have reported a method for assigning expected val-
ues to concepts in response to delayed rewards. If we interpret
these estimated values as priorities, then we can use them to
order the agent’s top-level goals and revise that order in the
light of its experience.

Finally, we plan to augment the extended system with re-
source management capabilities that involve the parallel exe-
cution of skills. When the agent notes that multiple top-level
goals are unsatisfied at the same time, it would attempt to re-
trieve skill paths that draw upon different resources, so that it
can execute them in parallel. For example, in attempting to
avoid a collision, the agent should be able to turn the steering
wheel and step on the brake simultaneously. This should im-
prove the system’s ability to achieve its goals in complex and
dynamic environments.

Concluding Remarks

In summary, our previous work on teleoreactive logic pro-
grams has shown that it offers a promising framework for
building intelligent agents, but we also found that it does not
scale well to tasks that involve many constraints. The domain
of urban driving, which requires the agent to obey a number
of laws, illustrates that such settings can lead to quite complex
programs for controlling agent behavior.

In response, we have developed an extended formalism,
prioritized teleoreactive logic programs, that incorporates an
ordered list of top-level goals. We demonstrated the benefits
of this approach in an urban driving domain, showing exper-
imentally that the complexity of its programs increases far
more slowly with the number of driving laws than in the orig-
inal formalism. Nevertheless, we must still extend the frame-
work along a number of dimensions, including its integration
with learning, to achieve its full potential.

Acknowledgements

This paper reports research sponsored by DARPA under
agreement FA8750-05-2-0283. The U. S. Government may
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyrights. The authors’ views and con-
clusions should not be interpreted as representing official
policies or endorsements, expressed or implied, of DARPA
or the Government.

We would like to thank Michael Morgan for his develop-
ment of the urban driving environment and GarageGames
(http://www.garagegames.com/) for allowing free use of its
products in that effort, including TorqueGame Engine 1.4.2
for Linux, BTCP Car Pack, and Urban Pack 1.0.0.

References

Asgharbeygi, N., Langley, P., & Stracuzzi, D. (2006). Re-
lational temporal difference learning. Proceedings of the
Twenty-Third International Conference on Machine Learn-
ing (pp. 49-56). Pittsburgh, PA.

Choi, D., Kaufman, M., Langley, P., Nejati, N., & Shapiro,
D. (2004). An architecture for persistent reactive behav-
ior. Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multi Agent Systems (pp.
988-995). New York: ACM Press.

Choi, D., Morgan, M., Park, C., & Langley, P. (2007). A
testbed for evaluation of architectures for physical agents.
Proceedings of the AAAI-2007 Workshop on Evaluating
Architectures for Intelligence. Vancouver, BC.

Freed, M. (1998). Managing multiple tasks in complex, dy-
namic environments. Proceedings of the National Confer-
ence on Artificial Intelligence (pp. 921-927).

Haigh, K., & Veloso, M. (1996). Interleaving planning and
robot execution for asynchronous user requests. Proceed-
ings of the International Conference on Intelligent Robots
and Systems (pp. 148—155). Osaka, Japan: IEEE Press.

Langley, P. (2006). Cognitive architectures and general intel-
ligent systems. Al Magazine, 27, 33—44.

Langley, P., & Choi, D. (2006). Learning recursive con-
trol programs from problem solving. Journal of Machine
Learning Research, 7, 493-518.

Miller, G. A., Galanter, E., & Pribram K. H. (1960). Plans
and the structure of behavior. Holt, Rinehart and Winston.

Nau, D., Cao, Y., Lotem, A., & Munoz-Avila, H. (1999).
SHOP: A simple hierarchical ordered planner. Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence (pp. 968-973).

Nilsson, N. (1994). Teleoreactive programs for agent control.
Journal of Artificial Intelligence Research, 1, 139-158.

Salvucci, D. D., & Taatgen, N. A. (in press). Threaded cogni-
tion: An integrated theory of concurrent multitasking. Psy-
chological Review.

Sammut, C. (1996). Automatic construction of reactive con-
trol systems using symbolic machine learning. Knowledge
Engineering Review, 11, 27-42.

